Experiments
- TA_CHSP_TFL1
By Michelle Sylvester
This fabric work represents the gene expression for Ta_ChSp_TFL1 (Chinese Spring Wheat). This work explores a combination of my experience at the Agricultural Research Centre with an exploration in understanding Jamie Larsen’s data set. By enlarging and simplifying the 522 character long gene expression I seek to make the data tangible to the viewer by inviting exploration through touch. Each pocket will be stuffed with a set weight of cracked wheat to represent the A,T,G, or C in the sequence.
- I Dream in Data
By Danin Lawrence
My first work determined itself to be based exclusively on my first response. It is my way of activating my own investigation towards taking in entirely new scenery. My initial reaction to the tour and the lectures at the Lethbridge Research Station was: How am I going to cross over to all of this new information when it is not in a language that I can easily understand? I began to consider ways in which this cross over becomes manifested. To me, the answer that arrived was about a personal limited understanding but couldn’t it be simultaneously about unlimited possibilities? How might those two notions arrive at the same place and at the same time? I decided that I would set myself parameters and create a work that I hoped reflected processes that showed limits. I limited myself to one material that also has limited abilities of use. I limited the supports used and I chose limited steps through which to take the material through. These limited processes that I had taken the material through, at the end, were placed in an eclectic installation. The installation was very important to this piece. I wanted to evoke a sense that there is still so much possibility that is, even within limitations.
- Data Spiral
By Robyn Matchett
For my piece I have decided to explore the effect of stripe rust on different wheats. My initial form is stretched and twisted in relation to the resistance and susceptibility of stripe rust genes on wheat. While my initial studies are in wood, I would like to progress into either metal or acrylic/glass.
- Wheat Gene Expression
By Eli Clements
My first project represents the activity of the VRN1 gene in different zadock stages of perennial plants. The circles that form at the beginning of the animation represent the different zadock stages from the data I chose (Z22,Z39,Z47, and Z65). As the animation continues stalks of wheat grow out and represents the growth of wheat for each zadock stage chosen. At the end of the wheats growth it will sprout out a coloured semi circle to show the activity of the VRN1 gene at that stage of the plants growth.
- Pixel Graphics
By Mat Ware
Inspired by late 20th century video game pixel graphics, I looked to work with a pseudo three-dimensional isometric art style, similar to the graphics seen in Chris Sawyer’s Roller Coaster Tycoon (1999). In addition, I felt that the emphasis on building, construction, and micromanagement in the game tied in well with the goals of the research data. I began with a simple bar graph mapping the presence of the tested gene in a particular part of the plant at different life stages. I then adapted that graph to the isometric style and experimented with the result, considering the potential problems with each iteration. Although still in the experimental stage, the “diorama” appears to be the most successful, and will likely be the biggest influence on the direction of the final project.
- Comparing Data in a Location vs. Rye Type Grid
By Taelynn Graham
These two programs let you compare 4 data points for each rye type at each location, laid out in a grid inspired by Russell’s project. To interact with it, choose which “quadrant” you want to adjust, and then click on the corresponding data point you would like represented there. There are still some bugs at this point, but I find the shapes that are generated are very interesting to look at.
For my first grid experiment, the distance of a corner point of the quadrilateral shape from its center is dependent upon the data (closer to center = smaller value).
My second grid experiment separated each quadrant data point into a circle of varying diameter, and each data point is represented by a different colour as well, to show more distinction between each data type. This is definitely a work in progress, and a concept I intend on refining further - Plant Height 3D Print
By Corwin Smith
This was the result of the plant height being printed on the 3D printer. I experimented with whether having the plant height really tall and far apart, or shorter and more together would give better results. I feel the right one with the taller and more spread out data points turned out to be more successful in this situation.
- Hagberg Falling Number Lattice
By Corwin Smith
For my second project where I created a lattice structure based off of the Hagberg Falling Number. What I did was use the Grasshopper definition used to calculate averages (created by Denton Fredrickson) and added on to it to make a definition used to create these graph structures for both location, and rye type. I then lined them up so that the graphs for location and rye type lined up and it created this interesting lattice structure which I then made into a physical object.
- Grasshopper Sketch
By Corwin Smith
This is the grasshopper definition in Rhino which was used to create the graphs for the lattice structure. In the green area is where the agronomic data is pulled in and averages are generated (The Agronomic and Grain Quality Averages portion of these Grasshopper sketches were done by Denton Fredrickson, and I utilized the framework he had created to add on and create my projects). In the grey area to the right is the stuff I did to take those averages and create the agronomic data. I created points which were placed from this data, and then lines were drawn between the points to create the final result before lining them all up. This could have been more efficient but it worked for what I wanted to do and I was happy with it.
This is the result of a suggestion made by Denton to use ranges in my grasshopper definition. This led to some research on how the range node worked, and I was able to make this definition which was much smaller and more efficient than what I have shown before in the media samples. The nodes in the grey area were what I put in to make those graphs, and you can see that it is much smaller and to the point that what I was working with before.
- Hagberg Falling Number Simulation
By Corwin Smith
This visualization was created using the data gathered for Hagberg Falling Number. It is used to determine the grain quality by making a thick gravy like mixture, and letting the plungers fall. The time it takes for the plunger to fall in the machine is recorded for the data point. When the falling number is higher it allows for better bread to be created since the starch content is much higher, so a higher number is looked for in the rye.
This project was done in collaboration with Taelynn Graham. We both had a very similar idea on how we wanted to visualize the Hagberg falling number through a simulation, so to help make the workload a little lighter for both of us we split it up. Taelynn worked at simulating the rye types showing plungers falling for each location. I simulated locations simulating the rye types falling. For this visualization I worked in Blender, and I felt it was very successful since I was able to show the falling number in an effective way. Not only that, but since I used 3D I was able to give a sense of the machines that are actually used to calculate this data, as well as having the metallic parts change colour for the different soil types of the locations. - Musical Mapping in Relation to Hagberg Falling Number
By Will Austin
The Long Drawing functions similarly to my first project, but instead graphs both ergot and protein percentage in response to a movement through decreasing Hagberg Falling Numbers. The cultivars and locations were again gridded, this time in order of average Hagberg Falling Number. The data is drawn with a point for each of the fourteen locations repeating through all fifteen cultivars (unlike in the painting, which is a movement through all 15 cultivars in each location sequentially). The song sounds with two overlaid melodies of 14 notes offset slightly, with the melody responding to protein % one octave higher than that of ergot %. Each note in the melody corresponds in frequency to relative protein/ergot percentage, within a specific location. The fourteen note order of locations stays the same while proceeding through each cultivar. All data is sounded relative to the whole set within two octaves of the B-flat minor key.
- Musical Mapping Ergot and Protein
By Will Austin
The painting contains a graph of % ergot ordered from average highest to lowest in both dimensions (cultivar vs. location), and a graph of % protein following the same order of cultivars and locations. The song which it accompanies is in the key of E minor, with fourteen 15-note melodies each divided by a full note rest. The variable of time is the movement through the 15 ‘cultivars’ (breeds) of rye from the least prone to ergot (fungal disease) to the most prone, repeating in structure through all of the studied locations from least prone to ergot to most (14 locations). The notes are determined by the relative percentage of protein divided through three octaves of E minor. Each registered breed is given a half note sustain, and each non-registered breed is given a quarter note. There is a bass drone under each 15-note melody which is the average for the current location across all breeds, dropped two octaves. It is meant to function generally as a graph of the correlation between ergot incidence (increasing as time) versus protein percentage (of grain).
- Hagberg Falling Number Simulation
By Taelynn Graham
The Hagberg Falling Number is important in determining grain quality, especially for bread-making. This test is done by churning the flour with warm water (essentially making gravy) and timing how long a plunger takes to sink to the bottom of the mixture. A higher falling number reflects higher quality, and I wanted to create a simulation to show the testing process. Corwin also had the same idea, so we split up the work into two parts: he would split simulations up based on location, and I would split mine up by rye type.
This interactive simulation allows you to choose which rye type you’d like to look at, and then use the buttons in the bottom right to play, pause, and rewind the simulation. The average for that rye type is also shown, so it is interesting to see how much higher Vauxhall is than any other location. There is also an option to see each rye type beside one another.
This simulation is interesting in the fact that it is “soft-coded”- it calculates everything you see based on the numbers in the data table. If another experiment was conducted, it would simply be a matter of putting the file into the program and everything would automatically be recalculated (number of rye types, names of each rye type, averages for each, etc.). - Exploring Heading Date, Maturity Date, and Grain Yield
By Taelynn Graham
This was my first attempt to visualize this new data set. I was initially interested in making some of the time-based data appear in a linear fashion, as this was something I hadn’t done yet in my data viz experiments. I decided to look at if there was a relationship between the date the heads emerged to its maturity date, and if that had an impact on the yield of those crops.
The overlapping circles are drawn for each rye type at each location, and the size of the circles are reflective of the yield. The four rows represent each province the rye was planted. From top to bottom: Alberta, Saskatchewan, Manitoba, and Ontario. I think it’s interesting how Alberta is much more consistent in maturity date and has higher yields than Saskatchewan or Manitoba.
- Environmental Impact on Rye Yield and Grain Quality
By Russell Mcmurty and Taelynn Graham
[Russell] This project was the first time I delved into something that you could hold this semester and I’m glad I had the help of Taelynn Graham. We started with lengthy conversations about how people interact with data and the impact of small multiples on the field of Data Visualization. With this conversation in our back pocket, we moved into brainstorming ideas that would display the most meaningful relationships within the data.
[Taelynn] Each transparency layer corresponds to a location, which then has four pieces of data being represented on two graphs: mean daily temperature and mean daily precipitation on the top, and then falling number and grain yield on the bottom. Since the Hagberg Falling Number and yield are important factors when considering a new plant breed for registration, we wanted to see how much of an impact the environment would play.
[Russell] I think both of us would love to expand this idea in various ways. I have an interest in etching the graphic on to glass or large sheets of plastic so that someone could interact with them in more dynamic ways while Tae has lots of plans as well. I think that this is an expansive idea we stumbled upon and I hope to reinvent it a few more times before we put it to rest.
[Taelynn] The transparent sheets were very flimsy, and the data would benefit from a solid, clear surface that would also be able to be mounted, in order to accurately line up the graphs if you wanted to. An installation piece where glass layers could be moved horizontally might make for some interesting interaction, and increasing the scale by at least double turns it into a full-body immersive experience. - Kernel Size Grid with Ergot Percentage Colour Overlay
by Russell McMurty
This project was originally an experiment that revolved around showing data for every cultivar and every city at the same time. This, much like my first project, is written in Java on a program called “Processing”. This image created a sense of scale for a viewer of the size of rye kernels across the entire data set. Then using colour, I add another level of data by comparing instances of ergot growth across all of the cities and cultivars.
On the whole I was very impressed with this project. I was excited that it showed relationships between kernel size and location/cultivar that the scientist we had be working with confirmed are well known in rye breeding. I was extremely cool to learn that I was uncovering other, new relationships as well.
I would like to expand this project to cover more portions of the data. I was very content to have the size of the ellipses have a spatial connection with the size of the kernels. Upon more learning, I’ve decided that this visualization would be equally impactful when it contains other bits of data too.
- “Biocontrol” Simulation
By Kiri Stolz
The goal of this sketch was to make the data “invisible”, so that the viewer doesn’t even know that it’s being shown to them. Behind the scenes are many pieces of code that calculate the likelihood that a piece of the digital plant will be galled by the digital wasps. These calculations are based entirely on the data itself, taking into account the age of the plant, it’s species, and how many galls were created on it during the actual experiment.
This style of Data Visualization is an effective way of introducing the viewer to a set of data that is not overwhelming or intimidating, but also allows them to construct their own questions about what they are seeing, and (hopefully) seek to have them answered, either by careful observation, or by speaking with an expert in the field.
- Interactive Scatterplot
By Kiri Stolz
A scatterplot is a fairly basic form of data visualization. It is, however, incredibly legible and can be very easy on the eyes. In this example, the user is able to change what values are being represented on the X and Y axes, as well as the values being represented by the size of the squares themselves. The user is invited to explore the data, and make their own representation of it.
In the early stages of this sketch, I realized that there was more to my little scatterplot than I had originally thought. The spray of pixel-like squares on the display created a captivating pattern that I wanted to expand upon. Now, the user has the ability to create these abstract scattered designs that have a deeper layer of meaning to those who view it in the context of the data itself.
- Number of Galls on Main and Lateral Stolons
By Linda Shi
This model represents data collected by counting the number of galls found on main and lateral stolons of Whiplash. The four sizes of rings represent four stages of stolon growth from largest to smallest; we see the stolons in their old to super young stages. I have also chosen green zip ties to be the colour for main stolons whereas black ones represent lateral stolons.
By building this physical model, I’m able to see, group by group, on what type of stolon or which stage of stolon growth is the wasp more prone to lay their eggs. I’ve noticed that on the main stolon, wasps are more attracted to the young and super young stages of the stems, whereas on the lateral ones, more galls are found in the oldest stage of growth. One thing to keep in mind is that the lateral stolons sprout later than the main stolons. This difference in time could potentially result in the differences we see between galled stolons. I’m interested in the potential architectural installation of this model. In a built project, I want to see people become part of the data and have a 1:1 scale interaction with it. - Cloud of Rings
By Linda Shi
In my final project, I’m taking the data I learned from Project one and the skills I’ve accumulated from Project two, to put together a larger skill installation in the presentation space.
My Cloud of Rings, instead of using the different sizes of rings to represent different stages of plant growth, I’m using the thickness of the rings to do so. By reversing the dark and light colors of the stolons, this color representation of the main and lateral stolons are more accurately displayed. Since the main stolons have grown for longer periods of time, they are thus represented by the darker colors.
Having the Cloud hang right above the hallway, I invite visitors to walk under the installation. The six strings hanging the are proportional to the number of total galls collected from each study.
The rings above overlap each other, creating various densities in the surface mesh. I hope this creates an interesting experience for those who walk below it. I hope to bring this project further by becoming more proficient at Rhino and Grasshopper. I would also like to use the 3D printer to construct smaller mock-up models of future interactions. - Galls on Main and Lateral Stolons Voronoi Map
By Linda Shi
Taking the physical mock-up model one step further, my second project renders a pattern that evokes the same set of data from my first project.
Using 3D modelling software, Rhinoceros, and its plug-in parameter modifier, I was able to manipulate geometries on the plane. Using the parameter Voronoi, the maximum area is drawn around each point defined on the plane. I’m drawn to the mathematical and structural properties of the pattern, creating interesting dynamics between each of the defined points:I want to use this pattern to represent the data collected. This pattern can easily be translated into a surface or screen that defines a specific architectural space. This will allow people to interact with data while navigating around the architectural installation.
- Greenhouses
By Kiri Stolz
This sketch represents the average number of galls in each of the six greenhouses that the bio-control experiments were carried out in. Each square represents one of the greenhouses, and the saturation of the colour is indicative of the average number of galls that had been created by the gall wasps at the end of the experiment. The idea here was to take the data back into the environment from which it came, and possible reveal new information about the space itself, and how that could have contributed to the production of galls or “fertility” of a particular greenhouse.
I was later made aware that some of the experiments were started later than others, which contributed to the low fertility rate in the top-leftmost greenhouse square. However, this data visualization led me to ask the questions necessary to learn more about the experiment than I had expected.
- Galled vs. Ungalled Portions of Hawkweeds
By Morgan Bath
All of the projects that I created this semester dealt with only the galled vs ungalled and did not focus on the lateral and the stolen figures. The works on paper are drawings of hawkweed seeds which were then manipulated to represent the ungalled portions of the plant that still have the ability to grow and the holes represent the lack of growth that the gulls created. The colours of the papers represent different plant growth stages as well as in the colour of the warp strings on the weavings I started.
The sounds piece that accompanies the works on paper is a creation from using the data provided for each plant stage and using the frequency of each number to create ten-second interval sounds of each plant stage and type. This piece I think was very successful, it is straight forward but I don’t think it is too literal, like the other pieces, right up front. I used two types of sounds wave one to represent galled and one ungalled and then just inserted the data set into the program to generate the sound clips.
- Re-Assessing Stolon Growth with Attention to Galling in Hawkweeds
By Keith Morgan
My previous visualizations had given me a few assumptions about the trial that seemed to go against some of the hypotheses of the researchers. I had come across a trend that seemed to show that when introduced to the biocontrols at certain ages, the hawkweeds tended to grow more stolons rather than fewer. What I had not taken into account when exploring this was what the galls themselves were doing: how were the galls dispersed on the plants, and did this have an effect? Again, I severely averaged out the data, this time combining all of the trials and all of the ages for the test group as one entity, and the control group as another. The key metrics for this visualization were the total average number of main and lateral stolons that grew on one plant, the average number of main and lateral stolons that had galls, and finally the average total number of galls per plant. Assuming that a galled stolon is considered ‘dysfunctional’, these new numbers actually reversed my original assumption that while galled plants tended to have more stolons on average, they actually had fewer ‘functional’ stolons. In my visualization, only these functional stolons grow to full length.
- Stolon Counts Between the Control and Test Trials of Whiplash and Mouse Ear Hawkweeds in Response to Galling
By Keith Morgan
Having worked with the data more, I was curious as to how much of an effect the galling process had on the quantity of stolons that grew on each species at the different trial ages. To achieve this, I compared the test group against a set of control samples as well. One of the primary questions for the original experiment was to test if the biocontrol agents could prove to be a natural method to control the hawkweed’s spread.
With this visualization, I maintained the age distinctions as it became clear when going through the data that the different species were more affected at different ages. I instead distilled the lateral and main stolon metrics together in order to have an average number of total stolons per species per age for both the control and test trials. With these numbers, I found the ratio of galled plants to the control plants in terms of the number of stolons they had. This ratio – while potentially misconstrued due to the averaging process – showed that only the Very Young group in Whiplash and Very Young and Young groups in Mouse Ear had reduced stolon counts. It appeared in the other groups that galling had in fact stimulated stolon production. It is this difference that I chose to express in my visualization.
A number of metrics are represented in this sculpture. The monoliths are 16’ high, 9.6” deep, 6’ wide, and have 48 spines. This represents the 16 plants per replicate, the 96 total plants in the trial, the 6 different replicates conducted, and the 48 plants per species used in the trial respectively.
The tree structures in this project were an addition inspired by Linda Shi’s first visualization where she modeled a series of abstracted trees using the data points to constrain the height of the trees and leaf population. When she explained that her model represented a large-scale installation that someone could walk under, my mind was completely and utterly blown wide open. It was the first data visualization that I resonated strongly with, and her architectural approach inspired me to create my own large-scale installation piece. Running within the Blender Game Engine, I wanted to honour Linda’s piece by recreating it in a setting more suited to her original vision alongside my own visualization. - Comparing Gall Formation on Main and Lateral Stolons in Whiplash and Mouse Ear Hawkweeds
By Keith Morgan
This was my first encounter with the data set, so in order to get familiar with the metrics and patterns in the data, I chose a straightforward representation to keep myself grounded. I attempted to show the number of main and lateral stolons that had been galled, in addition to the total number of galls that had formed on each species. These sets were expressed as the height of each collection of blocks in relation to the top of the clear walls on the sculpture.
My process involved combining the data from all of the ages of the plants in each trial so that the comparison was left to differences between species instead of age. What this allowed me to do was show that proportionally speaking, the Whiplash species had more main stolons galled, while Mouse Ear had more lateral stolons galled. Still, when we look at the total number of galls that grew, it became apparent that both species grew an almost identical number of galls. - Visualizing the Proportion of Galled and Ungalled Stolons Interactively
By Taelynn Graham
For this visualization, I looked at the relationship between different data points, particularly the proportions of stolons that were actually galled (which is the idea result of the experiment). I originally was working with the number of individual galls that were on each stolon, but realized that without seeing the relation of how many stolons were actually galled, the real message would be lost.
There is a lot of data being represented, and I really want people to be able to interact with it in order to create their own stories and get immersed in the data. There are two preset positions to help encourage these explorations.
This visualization calculates both the average number of galled and ungalled stolons per age group in each of the Hawkweed species, as well as the percentage that is actually galled. The lateral stolons really show how little proportion of galled stolons there are, showing that the effect of the gall wasps on the largest amount of growth of the plant was minimal. - Crocheting the Relationships Between Galled and Ungalled Stolons
By Taelynn Graham
This visualization uses the exact same data as my interactive digital visualization. I decided to represent the length of each section with crochet stitches, and they became quite lengthy, which shows how much spreading the Hawkweed plants actually do. I want people to be able to really understand the proportion of stolons being galled, and having a tangible object that you can hold and stretch out really shows this in a way that isn’t quite as easily understood by looking at a digital shape.
My intent was to keep the colours the same for both visualizations, so that viewers an easily move from one visualization to the other and be able to recognize that these are in fact the same pieces of data. The mounted crochet strips with a single strand down them represent the stolons galled and the average number of galls on these stolons. This is an added piece of data included to show how many galls exist in each section, and what it means in comparison to the proportions of galled stolons. Just because there are a lot of galls does not mean that the proportion is substantial. - Galled vs. Ungalled 3D Bar Graphs
By Corwin Smith
For this representation I wanted to show a comparison between galled and ungalled stolons in Whiplash. The green graphs represent the main stolons of Whiplash, and the yellow represent the lateral stolons of Whiplash. The graphs are separated into rooms, and then ages of the plants within the room. I always find 3D graphs on the computer to be very bad because of perspective, so I wanted to see if that same problem comes through when 3D printing the graphs of data. They were luckily much more effective as an actual 3D object than on the computer, and really allowed an interesting interaction from the viewer as they held it and were able to touch and look at it from all different angles.
- Stolon and Gall 3D Print
By Corwin Smith
This stolon and gall 3D print was made to show a larger scale representation of what the data was being collected from. Cylinders that fill the galls on the inside of the stolons give information about galled versus ungalled stolons relating to the age of the plant. This stolon shows the data collected from the main stolons of Mouse Ear. I was hoping to show what the stolon looked like with the galls to add to the understanding of what is being represented by this data. The cylinders used to represent area inside a gall were used to show the ratio between galled and ungalled in the different ages.
- Total Gall Count in the Main and Lateral Stolons for Mouse Ear Hawkweed
By Corwin Smith
The graphs represent the total gall count in the main and lateral stolons for Mouse Ear. The red represent lateral, yellow represents main, and green represents the total of both main and lateral. I was hoping to create these graphs to give an interactive aspect to them, where the user may swap them out and compare the different aspects of the data very easily.
Since it is a 3D object and can be moved around and interacted with, it brought a very unique feeling to the data when viewed the first time. It allowed myself to display a lot of data points efficiently and without the clutter that would happen with a similar 2d representation. This would allow them to compare parts of the data they need to.